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Introduction
The path to discovering and developing a new drug is far from 
easy. It is a process that can take over a decade and cost upwards 
of 1 to 2 billion dollars,1 yet the success rate remains shockingly 
low. More than 90% of drug candidates fail during clinical devel-
opment, and if preclinical failures are included, the odds are even 
worse.2 While many of these failures are attributed to lack of ef-
ficacy or safety issues such as toxicity, a substantial proportion are 
actually due to poor biopharmaceutic properties. In other words, 
a drug may appear promising in theory, but if it does not dissolve 

well, cannot cross biological membranes, is actively pumped out 
by efflux transporters, or is metabolized too quickly, it will not 
perform effectively in the body. These challenges fall under the 
domain of biopharmaceutics, the study of how a drug’s formula-
tion and physicochemical properties affect its absorption and bio-
availability. Despite ongoing advances in medicinal chemistry and 
formulation science, many compounds with therapeutic potential 
fail due to unresolved issues related to solubility, permeability, 
transport, or metabolism.3,4 The need for smarter, predictive strate-
gies grows as drug molecules become more complex. Emerging 
technologies such as in silico modeling, machine learning (ML), 
and artificial intelligence (AI) now offer powerful tools to assess 
biopharmaceutical behavior early in development. Innovations in 
drug delivery systems, including lipid-based carriers, nanotechnol-
ogy, and three-dimensional printing (3DP), have also reshaped the 
formulation of poorly bioavailable drugs. AI is playing a growing 
role in drug development, particularly in handling complex early-
stage decisions. ML, one of the most widely used AI approaches, 
involves models that learn from data to make predictions about 
absorption, distribution, metabolism, and excretion (ADME), 
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guide structural optimization, or classify drug candidates.5,6 An 
advanced form of ML called deep learning can recognize patterns 
in large and complex datasets, detecting genetic information and 
molecular structures that would be difficult to identify manually. 
Natural language processing is also being used to analyze massive 
amounts of biomedical literature and clinical trial data to uncover 
connections that might otherwise be missed. Additionally, experts 
and generative models are being employed to design drugs and 
predict molecular behavior. These AI techniques are making phar-
maceutical research faster, more accurate, and more efficient, as 
illustrated in Figure 1. The goal of this review is to provide a com-
prehensive overview of the major biopharmaceutic barriers to drug 
success, including poor solubility, limited permeability, transport-
er-mediated efflux, and extensive metabolism. It also discusses 
recent technological developments and computational innovations 
aimed at overcoming these challenges, as well as regulatory con-
siderations and future directions for integrating these approaches 
into modern drug development.

Biopharmaceutic barriers to drug success
Drug discovery and development is an extremely long and expen-

sive process, taking up to 10 years and costing over one to two 
billion dollars. Despite these investments, more than 90% of drug 
candidates fail during clinical development. What makes this even 
more concerning is that this 90% failure rate only applies to drugs 
that actually make it into clinical trials. If preclinical failures were 
included, the odds of success would be even lower.7,8 The main 
reasons behind these failures include lack of efficacy, which ac-
counts for approximately 40–50% of cases, followed by safety-
related issues such as toxicity (around 30%). In addition, poor 
drug-like properties, including low solubility, limited permeability, 
or extensive metabolism, contribute to about 10–15% of failures. 
Although significant progress has been made in optimizing drug-
like properties, the overall clinical success rate has not improved 
considerably and still remains low, at around 10–15%.7

Solubility and permeability issues
Although a drug can be pharmacologically effective in vitro, it must 
first dissolve in gastrointestinal fluids and traverse the intestinal 
epithelium to exert therapeutic effects when administered orally. 
Solubility is the first and most critical requirement for absorption, 
and its absence often results in limited or erratic bioavailability. 
Drugs must cross the gut wall to reach the bloodstream, which 

Fig. 1. The role of AI in biopharmaceuticals utilizes in silico modeling, machine learning, and deep learning to enhance ADME properties and improve drug 
bioavailability and development success. ADME, absorption, distribution, metabolism, and excretion; AI, artificial intelligence; SVM, support vector machine.
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becomes difficult if they are too hydrophilic or too large.9 In fact, it 
is estimated that approximately 40% of approved drugs and nearly 
90% of drug candidates in development are poorly water-soluble, 
a condition that severely affects their clinical success and mar-
ket translation.10–12 The Biopharmaceutics Classification System 
(BCS) was developed to conceptualize the relationship between 
solubility and permeability. According to this system, compounds 
are classified into four classes based on their solubility in water 
and their permeability across the gut wall.13,14 For example, Class 
I medications, such as propranolol, are highly soluble and highly 
permeable, and therefore typically do not encounter significant ab-
sorption problems. Class II drugs, like carbamazepine, have good 
permeability but poor solubility, so formulation strategies such as 
solid dispersions, amorphous forms, or lipid-based delivery sys-
tems must be employed.15 In contrast, BCS Class III drugs, such 
as alendronate and acyclovir, dissolve readily but are poorly ab-
sorbed due to limited membrane permeability, necessitating bioen-
hancers or advanced delivery systems such as microparticles and 
liposomes.16 BCS Class IV compounds, which lack both solubil-
ity and permeability, pose substantial formulation challenges and 
often exclude oral administration unless innovative technologies 
are used.15 To overcome absorption limitations in these classes, 
lipid-based nanocarriers, solid dispersions, and 3D-printed micro-
structures are actively being investigated. Computational tools, 
including quantitative structure-activity relationship models, ML, 
and AI, now allow molecular libraries to be screened for solubility 
and permeability characteristics at high throughput, streamlining 
formulation design and candidate selection.17 This integrated ap-
proach reduces development costs and late-stage attrition caused 
by unfavorable biopharmaceutical properties. Unlike traditional 
solubility screening methods, which are labor-intensive and re-
quire empirical formulation development, AI-based tools such as 
ADMETlab 2.0 and SwissADME can predict solubility profiles, 
BCS classes, and permeability in real time with high accuracy.18,19 

Compared with standard in vitro screens, these platforms provide 
better insights for formulation decisions at an earlier stage of com-
pound triaging, as illustrated in Figure 2.

Transporters like P-glycoprotein (P-gp) and breast cancer 
resistance protein (BCRP)
Even if a drug dissolves efficiently and demonstrates good perme-
ability, it still faces another obstacle: efflux transporters. Proteins 
such as P-gp and BCRP are present in the intestinal lining and can 
significantly affect drug absorption. These transporters, often re-
ferred to as “cellular bouncers”,20 actively export drugs back into 
the intestinal lumen, thereby reducing both absorption and overall 
bioavailability.21 Drugs such as digoxin, paclitaxel, and topotecan 
are classic examples affected by P-gp and BCRP.22–24 These trans-
porters not only influence intestinal absorption but also play crucial 
roles in drug distribution and elimination. P-gp and BCRP are ex-
pressed in multiple tissues, including the liver, kidney, placenta, and 
blood-brain barrier. Their physiological function is to protect tissues 
from xenobiotics; however, this protective mechanism can severely 
limit the accessibility of therapeutic agents to target sites. Addition-
ally, genetic polymorphisms in transporter genes such as ABCB1 
and ABCG2 can alter transporter expression, affecting the phar-
macokinetics and therapeutic response of substrates.25,26 In cancer 
therapy, overexpression of P-gp in tumor cells can lead to multidrug 
resistance, where cancer cells become resistant to chemotherapy 
despite high drug doses.27 To study efflux-mediated transport, the 
Caco-2 cell line is widely used due to its similarity to human en-
terocytes. However, differentiation and formation of tight junctions 
take 21–24 days, making it less suitable for high-throughput screen-
ing.28 AI-based tools such as quantitative structure–property rela-
tionship modeling have emerged as efficient alternatives, capable of 
predicting permeability and efflux interactions in silico. Platforms 
like DeepTox and other ML-based transporter prediction models can 
screen large compound libraries for P-gp and BCRP affinity, ena-

Fig. 2. Comparison of traditional and AI-based drug development strategies shows that AI approaches utilize predictive models, while traditional meth-
ods depend on iterative laboratory testing. ADME, absorption, distribution, metabolism, and excretion; AI, artificial intelligence.
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bling early detection of liabilities and reducing the need for exten-
sive in vitro testing.29 In addition to P-gp and BCRP, organic cation 
transporters and organic anion transporters (OATs) play important 
clinical roles. They are primarily expressed in the kidney and liver, 
where they regulate systemic availability and clearance of many 
therapeutics.21,30 For example, organic cation transporter 2 medi-
ates the renal uptake of metformin31 and cisplatin32; its inhibition 
or genetic variation can alter drug efficacy and toxicity.33 Similarly, 
OAT1 and OAT3 facilitate the uptake and elimination of penicillin, 
methotrexate, and NSAIDs, making them critical determinants of 
drug half-life and renal clearance.34 Understanding whether a drug 
is a substrate or inhibitor of these transporters is now considered a 
critical component of preclinical evaluation. Regulatory agencies, 
including the U.S. Food and Drug Administration (FDA) and the 
European Medicines Agency, increasingly require comprehensive in 
vitro and in vivo data on transporter interactions.35 This is essential 
for predicting and managing drug-drug interactions, which may re-
sult in enhanced toxicity or therapeutic failure. Advanced in silico 
models and AI-based prediction platforms are also used to detect 
transporter-related liabilities early in development.36,37 By identify-
ing transporter interactions early and integrating this data with phar-
macokinetic modeling, developers can optimize dosing strategies, 
anticipate population variability, and improve the safety and efficacy 
profile of novel therapeutics.38

Metabolism and CYP450 enzymes
Another critical barrier to drug bioavailability is metabolism. Even 
if a drug is absorbed, it can be extensively metabolized by liver 
enzymes before reaching systemic circulation, diminishing its 
therapeutic efficacy. This phenomenon, known as first-pass me-
tabolism, is primarily carried out by the cytochrome P450 family, 
especially CYP3A4, CYP2D6, and CYP2C9, which together me-
tabolize approximately 80% of commonly used drugs.39 A classic 
example is propranolol, which has only about 25% bioavailability 
due to significant hepatic metabolism.40 Similarly, midazolam is 
almost entirely metabolized by CYP3A4.41 One of the most sig-
nificant challenges posed by CYP-mediated metabolism is its high 
interindividual variability, largely due to genetic polymorphisms. 
These variations can drastically influence drug exposure and pa-
tient response, classifying individuals as “poor metabolizers” or 
“ultra-rapid metabolizers,” which increases the risk of side effects 
or therapeutic failure.42 Co-administered drugs or foods can also 
inhibit or induce CYP enzymes, leading to dangerous drug-drug 
interactions. A notable example is grapefruit juice, which contains 
furanocoumarins that inhibit intestinal CYP3A4, resulting in ele-
vated plasma levels of simvastatin and potentially causing myopa-
thy and hepatotoxicity.43 Modern drug development increasingly 
integrates computational approaches to address these challenges. 
AI-enabled tools such as SMARTCyp, DeepCYP, and MetaSite 
utilize molecular characteristics and structure-activity relation-
ships to predict vulnerable sites of metabolism, assisting medicinal 
chemists in designing metabolically stable drug candidates.44–46 
Integrating predictive metabolism modeling during early-stage 
development enhances candidate selection, minimizes late-stage 
failures, and supports rational dose design,39 particularly in phar-
macogenetically diverse populations.47

AI & computational modeling in biopharmaceutics

ADME & in silico models
The optimization of drug therapy depends on the precise prediction 

of how a medication is ADME within the body. Biopharmaceutics 
integrates knowledge from pharmacology, chemistry, and physi-
ology to optimize drug discovery and development. At its core, 
biopharmaceutics studies how a drug’s formulation influences its 
ADME, ultimately impacting efficacy and safety.48,49 Unfavorable 
ADME properties are a major cause of late-stage drug candidate 
failure, resulting in significant financial losses and time expendi-
ture in research and development.17 To address this challenge, in 
silico modeling was introduced, with its earliest models dating 
back to the 1970s–1980s. These models primarily employed quan-
titative structure-activity relationships to predict drug-receptor in-
teractions based on molecular properties.50 In silico models use 
computational techniques to develop pharmacological models that 
predict biological and chemical processes, thereby aiding drug 
discovery and development. Increasing computational power has 
expanded the scope of in silico modeling, reducing costs and im-
proving efficiency in the drug discovery process.17,51

ADME screening methods
ADME screening is used to identify and optimize new chemical 
entities, the primary focus of drug discovery. Traditional ADME 
screening methods relied on low-throughput in vitro and in vivo 
assays, which were manual and inefficient.52 Around the year 
2000, high-throughput in vitro ADME (HT-ADME) methods were 
introduced. While still relying on biological assays, HT-ADME 
operates on an industrial scale using robotics, advanced analytical 
techniques such as LC/MS/MS, liquid handlers, and miniaturized 
assay plates, making the process more efficient and cost-effective 
than low-throughput methods. However, HT-ADME is still limited 
compared with in silico models, as it relies on physical experi-
ments, expensive equipment, consumables, and considerable time 
to generate data.53,54

Advantages of AI models in ADME prediction
AI models in in silico screening provide significant advantages, 
particularly in predictive accuracy and efficiency. Using computa-
tional methods such as ML, these models can analyze large datasets 
to identify complex patterns related to pharmacokinetic properties. 
By simplifying relationships between physicochemical parameters 
and ADME endpoints, AI enables rapid identification of promising 
candidates without extensive wet lab experiments.51 These models 
enhance new chemical entity design by simultaneously optimizing 
multiple ADME parameters alongside bioactivity.55,56

One such model is SwissADME, a free web tool with a user-
friendly interface that provides access to robust predictive models 
for pharmacokinetics, physicochemical properties, drug-likeness, 
and medicinal chemistry friendliness. SwissADME stands out for 
its advanced prediction algorithms, including the BOILED-Egg 
model, bioavailability radar, and Lipinski’s Rule of Five. These 
algorithms serve diverse purposes, from evaluating drug-likeness 
to predicting gastrointestinal absorption and blood-brain barrier 
permeability.18,57

Another recent model, Deep-Pk, uses graph neural networks 
and graph-based signatures to deliver strong predictive perfor-
mance across multiple endpoints. Deep-Pk predicts ADMET (ab-
sorption, distribution, metabolism, excretion, and toxicity) across 
73 endpoints, achieving an external validation mean Matthews 
correlation coefficient of 0.58 and receiver operating character-
istic – area under the curve (ROC-AUC) scores exceeding 0.80 
for most classification tasks.58 However, like many deep learn-
ing models, Deep-Pk may struggle with interpretability and could 
exhibit bias when applied to chemical spaces differing from its 
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training set. kMoL, an open-source ML library, has demonstrated 
strong performance on benchmark datasets, achieving ROC-AUC 
scores above 0.75 in ADME and toxicity tasks, both in centralized 
and federated settings.59 By using graph convolutional networks 
to model molecular structures as graphs, kMoL outperforms tra-
ditional methods.59,60 Despite its flexibility and focus on privacy 
preservation, performance can vary depending on dataset size and 
quality, making careful hyperparameter tuning essential. While 
uncertainties remain in in silico predictions, particularly in drug 
discovery, methods to quantify these uncertainties can enhance in-
terpretability and improve confidence in model predictions.61

ML applications in formulation design
ML, a branch of AI, creates predictive models trained on previ-
ous datasets, which can be derived from both in vivo and in vitro 
experiments. ML-based approaches are increasingly common, 
providing significant predictive power and screening capabilities 
that help identify the most suitable drug candidates, thereby en-
hancing accuracy and efficiency.62 The most commonly used ML 
techniques for screening are support vector machines (SVMs) and 
random forests (RFs). SVMs excel in high-dimensional spaces by 
identifying hyperplanes that maximize class separation, but they 
require careful tuning and are less efficient with large datasets. In 
contrast, RFs use multiple decision trees to handle large or noisy 
datasets with minimal tuning, offering resistance to overfitting. 
Although RFs may lack some interpretability compared to SVMs, 
they are better suited for diverse real-world data. SVMs work best 
with structured data, while RFs are preferred for scalability.63,64

Both techniques are widely employed in drug formulation de-
sign, particularly for classification and regression tasks. SVMs 
are highly effective for binary classification and high-dimensional 
datasets, making them suitable for predicting ADME properties 
such as solubility. ML-based models also analyze diverse genomic, 
proteomic, and clinical datasets to identify potential drug targets 
and prioritize candidates based on criteria such as drug-likeness 
and therapeutic relevance.62,65 The AlphaFold program, developed 
by DeepMind, has transformed AI-driven drug discovery by pre-
dicting 3D protein structures with unmatched accuracy through 
deep learning. AlphaFold aids structure-based drug design by iden-
tifying protein-ligand interaction sites, supporting target validation 
and virtual screening. With over 200 million structures available 
in the AlphaFold Protein Structure Database, it has become an es-
sential resource in rational drug design.66,67 As target structure pre-
diction improves, efficient screening of vast compound libraries 
becomes increasingly important in identifying optimal candidates.

Modern drug discovery heavily relies on compound libraries 
containing millions of molecules. For example, the ZINC22 library 
houses 4.1 billion molecules. The growing size of these libraries 
necessitates faster and more efficient screening methods.68 Early 
ML models using RFs focused on computational prioritization 
but lacked scalability.69 The sheer volume of data from genomics, 
proteomics, metabolomics, imaging, and electronic health records 
requires AI to discern meaningful patterns, process large datasets 
efficiently, and analyze longitudinal patient data. This capability 
enables understanding of individual patient trajectories, which is 
essential for predicting how a drug is absorbed and metabolized 
over time.70

How does AI predict and personalize drug absorption?
AI has become increasingly important in screening compounds 
with favorable ADME properties. One recent advancement is Ro-
settaVS, an AI-driven platform that uses physics-based protocols 

to dock billion-molecule libraries in days, achieving a 44% hit rate 
for Nav1.7 in just seven days.71 AI and ML also play a crucial role 
in understanding the complex relationship between an individual’s 
genetic makeup and drug response. In pharmacogenomics, genetic 
variations strongly influence drug metabolism and transport, di-
rectly affecting absorption. AI can analyze an individual’s genetic 
profile to identify genes responsible for drug absorption and me-
tabolism, predict likely drug responses, and enable selection of the 
safest and most effective treatment. AI-powered pharmacogenom-
ics has the potential to revolutionize personalized medicine, pro-
viding innovative solutions and improved predictive accuracy to 
benefit patient care.72,73 However, AI tools must undergo thorough 
evaluation to ensure they are applied safely and fairly, just as with 
any new therapeutic intervention.74

Biopharmaceutics

3D-printed pharmaceuticals for personalized bioavailability
Drug discovery has seen remarkable progress, yet scientific in-
novation continues to emerge rapidly across multiple fields. One 
such innovation is 3DP, a process that creates a three-dimensional 
object from a digital design. Unlike traditional subtractive manu-
facturing, which removes material, 3DP builds objects layer by 
layer,75 3DP enables customization of drug delivery systems, 
providing personalized treatment options. It allows the creation 
of complex dosage forms, such as multi-compartmental capsules, 
which can combine multiple drugs in a single dosage form and 
be adjusted according to combination therapy needs.76,77 While 
3DP shows great potential for improving drug bioavailability and 
facilitating personalized therapies, most current data comes from 
in vitro experiments or animal studies. Large-scale clinical trials 
validating these methods are limited, and regulatory approval path-
ways are still evolving.78,79 3DP also offers advantages for for-
mulating drugs with poor water solubility.80 Mesoporous materials 
can enhance the dissolution rate and bioavailability of such drugs 
using techniques such as fused deposition modeling or semi-solid 
extrusion (SSE). For example, drug-loaded mesoporous magne-
sium carbonate formulations have achieved high drug loading of 
15.3% w/w.81

Techniques such as fused deposition modeling, stereolithog-
raphy, selective laser sintering, binder jetting, SSE, and hot-melt 
extrusion offer diverse possibilities in pharmaceuticals.82 For in-
stance, SSE can produce tablets and suppositories with enhanced 
dissolution kinetics, increasing bioavailability by extruding a non-
aqueous paste containing drug-loaded mesoporous materials.83 
Despite its potential, 3DP faces limitations, including material 
selection, biocompatibility concerns, potential toxicity from deg-
radation products such as those from polylactic acid, regulatory 
hurdles, scalability issues, and cost-effectiveness. Customization 
of dosages also raises ethical concerns, as it relies on sensitive pa-
tient data that must be protected.84 Nevertheless, the future of 3DP 
remains promising, especially when integrated with AI and ML to 
further expand its applications.85

Biodegradable nanocarriers for targeted drug delivery
Nanocarriers are another promising avenue in drug discovery. 
These nanoscale delivery systems encapsulate and transport 
therapeutic agents, fine-tuning drug ADME profiles.86 Biodegrad-
able nanomaterials used in nanocarrier technology hold particular 
promise, as they safely degrade in the body into natural elements 
over time, reducing systemic toxicity. Nanocarriers are typically 
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composed of polymers, both natural and synthetic. Natural poly-
mers include polysaccharides and proteins such as chitosan, algi-
nates, albumin, and cellulose derivatives. Synthetic polymers, such 
as polylactic acid, are popular for their high biodegradability.87 Na-
nocarriers provide targeted drug delivery through passive and active 
mechanisms. Passive targeting relies on inherent nanocarrier prop-
erties to accumulate in specific areas, such as tumor sites. Active 
targeting involves techniques such as ligand-mediated targeting or 
molecularly imprinted nanocarriers, facilitating site-specific drug 
delivery.88 Despite these advances, concerns remain regarding long-
term biocompatibility, potential toxicity from accumulation or im-
mune responses, and challenges in large-scale manufacturing, lim-
iting clinical translation.89,90 For example, poly(lactic-co-glycolic 
acid)–polyethylene glycol (PLGA-PEG) nanoparticles co-encapsu-
lating gemcitabine and botulinic acid have demonstrated improved 
anti-tumor efficacy in pancreatic cancer cell lines.91

Regulatory challenges in biopharmaceutical innovation
Although addressing biopharmaceutical needs by employing AI 
and other technologies shows promise, significant regulatory chal-
lenges remain. AI and ML heavily depend on representative data, 
but pharmaceutical datasets are complex and often uncertain, which 
can introduce bias in AI training and lead to inaccurate outcomes, 
potentially exacerbating health disparities. Ensuring data quality, 
reproducibility, and reliability is therefore critical.92 Regulatory 
agencies, such as the FDA and the European Medicines Agency, 
are developing frameworks to govern AI use, incorporating real-
world and open-source data along with robust quality standards 
to ensure fair and ethical implementation in drug discovery.93 In-
novations such as 3DP and biodegradable nanocarriers also face 
lengthy approval processes. Preclinical and clinical data are re-
quired to demonstrate safety and efficacy, imposing significant 
cost burdens. For 3DP, consistent quality, scalable production, and 
material safety, including inks used in printing, must be ensured. 
For nanocarriers, challenges include characterizing nanomaterials’ 
size, shape, and surface properties, minimizing off-target accumu-
lation, and ensuring biocompatibility and safety.

Implementation strategies for overcoming regulatory challenges 
in novel drug formulations
To overcome these challenges, active communication with regu-
latory authorities is essential during development. The FDA’s 
Emerging Technology Program, for example, provides developers 
with real-time guidance on novel manufacturing practices, align-
ing preclinical and clinical protocols with regulatory expectations 
and reducing issues in later stages.94 Adopting quality by design 
principles allows manufacturers to build quality into the product 
from the outset, simplifying critical quality attributes and critical 
process parameters to ensure consistency and reproducibility.95 
Regulatory agencies, following ICH Q8–Q11 guidelines, endorse 
quality by design principles to streamline approvals for innovative 
products. By adopting these strategies, cutting-edge therapies can 
reach patients without compromising safety or efficacy.96,97

Limitations and future prospects
The incorporation of AI, advanced predictive tools, and innova-
tive drug formulation methods can help address the complex chal-
lenges associated with drug development. Future research should 
focus on validating AI-based prediction tools for drug ADME 
using extensive real-world patient datasets, enhancing regulatory 
acceptance of these algorithms.98,99 Additionally, integrating AI 

with 3DP and designing nanocarriers creates new opportunities 
for personalized medicine, enabling drug delivery tailored to in-
dividual patient profiles. At the same time, it is essential to use 
data ethically, minimize biases in AI programs, and ensure trans-
parency in AI-driven decisions throughout the drug development 
process.

Several limitations of this review should also be acknowledged. 
Given the rapid evolution of this field, some of the latest develop-
ments may not be fully covered, and the review aims to provide an 
overview of key biopharmaceutical barriers and emerging AI-driv-
en strategies. While case studies and tool-specific examples are 
presented, many applications remain in preclinical or experimen-
tal stages and have not yet been tested in large populations. Fur-
thermore, this review provides limited coverage of health equity 
implications, global regulatory harmonization, and the economic 
feasibility of adopting AI and advanced formulation technologies. 
These areas warrant further investigation in the near future.

Conclusions
Biopharmaceutic challenges, including poor solubility, limited 
permeability, active drug efflux, and extensive metabolism, re-
main major reasons why many promising drug candidates fail to 
reach the market. While traditional formulation approaches aim to 
improve biopharmaceutical properties, they often overlook mod-
ern, multi-targeted, and chemically complex molecules. Address-
ing these obstacles in contemporary research requires integrating 
advanced technologies. In early stages of drug development, AI 
is increasingly applied to predict absorption and metabolism pro-
files using tools like SwissADME and DeepCYP, while generative 
models assist in synthesizing drug-like molecules with improved 
target characteristics. In silico simulations of transporter interac-
tions also support risk evaluations prior to clinical trials. In drug 
formulation, 3DP enables the creation of multi-compartmental and 
layered tablets tailored to specific absorption windows and desired 
release kinetics. Meanwhile, lipid-based and PLGA-PEG nanopar-
ticles serve as biodegradable carriers, improving the delivery of 
poorly soluble and unstable drugs in oncology and central nervous 
system therapies that require advanced delivery systems. These 
examples demonstrate that the application of these innovations is 
no longer a distant potential; they are already making meaning-
ful impacts. As integration continues, it will be essential to align 
these tools with regulatory frameworks, ensure data transparency, 
and focus on clinically relevant endpoints to ensure their long-term 
impact on successful drug development.
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